KI-Projekt, AI

Three steps to a successful AI Project

Munich, November 15, 2018 – Artificial Intelligence applications are becoming more and more tangible – particularly in the industry sector. This raises hopes as well as fears. Companies therefore need to know exactly what’s behind the hype, carefully weighing up all opportunities and risks involved. In an exclusive white paper, Device Insight provides IT leaders, CIOs and production managers application-oriented insights into “AI in IoT”.

AI is becoming more and more important for industry. This is mainly due to the fact that applications of human-machine interaction and collaboration are becoming ever more tangible. This includes remote monitoring and control of production processes, which are becoming simpler and faster thanks to modern Augmented and Virtual Reality applications. At the same time, consumers are worried that this could lead to “Robot Apocalypse”, destroying millions of jobs for
people.

Consultants at PricewaterhouseCoopers have predicted that 35 percent of professional activities in Germany could be automated by 2030, particularly in the transport and logistics, production and
sales sectors. This is precluded by a shortage of up to four million mainly highly skilled workers, but this is precisely where AI also offers perspectives. Forecasts predict that digital technologies
will lead to entirely new types of jobs, currently unknown to us.

Higher expectations, greater need for information

According to Hendrik Nieweg, Head of Solution Management at Munich-based IoT platform provider Device Insight, “Machines are very talented, but they will not be in a position in the near future to develop intuition or be creative”. Industry expectations are high, Nieweg continues, but it must be explained that Artificial Intelligence and Machine Learning are not a universal remedy and that it is better to start with simple algorithms and clearly-defined applications rather than going straight for the big leap.

Predictive Maintenance:
a clear case for Machine Learning

As part of AI, Machine Learning offers industry companies new possibilities, using mathematical algorithms to recognize patterns to deduce new possibilities for action. A prominent area of application for Machine Learning is Predictive Maintenance. Device Insight core competencies include the collection and storage of operation and production data provided by sensors in an IoT Platform which can then be analyzed using ML algorithms to precisely predict critical machine
conditions and plan maintenance intervals as demanded. Consequently, the more extensive the data basis, the better it can be predicted when a service case arises or the “end of life” of a component is reached.

IoT and machine learning in three steps

Munich-based IoT specialist Device Insight uses a three-step ML approach: First, data is collected to show where action is required. Next, in step two, these findings are put into practice in a Rule
Engine. Finally, step three involves the automation of processes using statistical methods and ML algorithms as well as predicting maintenance assignments.

In our white paper “Artificial Intelligence in IoT – Use Cases and Success Factors”, you can see how this works using concrete pplications. Device Insight shows here how companies can start optimizing their production processes using simple algorithms and clearly-defined use cases.

Are you interested in more applications or would you like to talk to our expert Hendrik Nieweg, Head of Solution Management? We are naturally always at your service should you have any further queries.

______________

White paper “Artificial Intelligence in IoT – Use Cases and Success Factors”:

Latest Posts

  • Continuing our series “Business Model Innovation for the Internet of Things”. After looking at the fundamentals and success factors of the business model design process in Part 1, in Part 2, we show in which innovation dimensions new IoT business models can be classified....

  • Many companies are looking to use the Internet of Things (IoT) to modernize their existing business model or to create completely new services and products for their customers. But how do you proceed and what steps do you have to consider along the path to a successful IoT business model? In our series “Business Model Innovation for the Internet of Things” we will cover this and more. In Part 1 we will take a look at success factors and the business model design process....

  • The advance of digitization is making data an essential asset of a company. However, this data only generates actual added value for those companies that are in a position to generate concrete insights, conclusions and forecasts from their data treasure trove. Data Analytics is therefore becoming the crucial competitive factor of the future....



X
Tweet
Share
Pin
Share